Utility MACT Working Group

Hg: Accounting for Variation/Error

OAQPS/ESD July 9, 2002

Data

- 80 plants
- 3 runs
- 240 data points

Analysis

- Used SAS VARCOMP (Variance Component) procedure
- Analyzed the following model

$$Y_{ij} = \mu + F_i + P_j + e_{ijk}$$

$$Y_{ij} = \mu + F_i + P_j + e_{ijk}$$

- Where
 - Y_{ij} is the observation for the jth plant using the ith fuel for the kth run
 - lacksquare μ is the overall mean,
 - F is a fixed effect for the fuel type (e.g. lignite)
 - P is a random effect due to a plant,
 - e is an error term with all remaining sources of variation

Results

- Variance component due to plants
 - 45.94
- Variance component due to error
 - 13.29

Application

- Variance due to plant for a 3-run mean
 - 19.74
- Variance due to error for a 3-run mean
 - 4.44
- T-values for 90, 95, and 99 percent, one-tailed confidence interval
 - 1.2816
 - 1.645
 - 3.323

Application (cont.)

Mean of best 12% for each fuel type

Bituminous 0.087

Sub-bituminous 0.724

Lignite 2.251

Application (cont.)

Limit will be a one-sided confidence interval of the means of the best 12% percent for each fuel type

$$Limit = \overline{X}_{best \ 12\% \ for \ fuel} + T_{\alpha, df>30} \bullet S$$

$$S = \sqrt{S_{plant}^2 + S_{error}^2}$$

Application (cont.)

Resulting potential floor levels that incorporate variability (lb/TBtu)

Fuel	90% limit	95% limit	99% limit
Bituminous Sub-bituminous	5.782 6.419	7.397 8.034	10.409 11.046
Lignite	0.419 7.946	6.034 9.561	12.573

